
Take it EASEA

Pierre COLLET� Evelyne LUTTON�

Projet Fractales � INRIA Rocquencourt� B�P� ���� �	��
 Le Chesnay cedex� France

Pierre�Collet�inria�fr� Evelyne�Lutton�inria�fr � Tel � 

 ���� 
���
������

http���www�rocq�inria�fr�fractales

Marc SCHOENAUER

EAAX � CMAPX � �Ecole Polytechnique� ����	 Palaiseau cedex� France

Marc�Schoenauer�polytechnique�fr

http���www�eeaax�polytechnique�fr

Jean LOUCHET

AMI � LEI � �Ecole Nationale Sup�erieure de Techniques Avanc�ees�


� Boulevard Victor� ����� PARIS� France

Louchet�ensta�fr

http���www�ensta�fr��louchet

January ��� ����

Category � Genetic Algorithms

Abstract

Evolutionary algorithms are not straightforward to implement and the lack of any specialised language
forces users to reinvent the wheel every time they want to write a new program� Over the last years�
evolutionary libraries have appeared� trying to reduce the amount of work involved in writing such algorithms
from scratch� by o�ering standard engines� strategies and tools� Unfortunately� most of these libraries are
quite complex to use� and imply a deep knowledge of object programming and C��� To further reduce
the amount of work needed to implement a new algorithm� without however throwing down the drain all
the man�years already spent in the development of such libraries� we have designed EASEA �acronym for
EAsy Speci�cation of Evolutionary Algorithms	
 a new high�level language dedicated to the speci�cation
of evolutionary algorithms� EASEA compiles �ez �les into C�� object �les� containing function calls to a
chosen existing library� The resulting C�� �le is in turn compiled and linked with the library to produce
an executable �le implementing the evolutionary algorithm speci�ed in the original �ez �le�

EASEA v��� is available on the web at
 http���www�rocq�inria�fr�EVO�Lab� �

�



� Introduction

Not so long ago� evolutionary algorithms were considered as mere fantasies set up by mad computer scientists�
No respectable researcher would ever have considered using such algorithms to do anything serious� Things
have changed however over the years and many end�users �chemists� physicists� mathematicians� � � � � have
ended up selling their scienti�c souls to Darwin� Unfortunately taking this decision is not the hardest part of
their ordeal� the evolutionary algorithm they have been dreaming of remains to be written and many of them
are only occasional programmers� used to procedural languages such as Pascal or Fortran� This is very
understandable as they are not state of the art computer scientists after all�

One way to speed up the process is to use one of the many existing evolutionary libraries� All is for the best as
they o	er very powerful tools provided � � � one is 
uent enough with constructors� copy�constructors� destructors
and such niceties involved by relatively low�level object languages�

The next hurdle is then to learn how to use the library� to understand the intricate data structures and to
memorise the necessary several hundred object types� functions and variables and the way they are inter�
related� This can be quite time consuming when all major evolutionary libraries are written in C�� and make
full use of object programming�

All in all� many physicists� chemists� mathematicians and other scientists who otherwise would be capable of
writing relatively simple functions in C� Fortran or Lisp are denied experimentation of evolutionary algorithms
due to the sheer complexity of their implementation�

The aim of EASEA �EAsy Speci�cation of Evolutionary Algorithms� is to hide this complexity behind a
high�level language� allowing scientists to concentrate on evolutionary algorithms� rather than on their imple�
mentation�

� Previous work

Some research teams have already felt the need for a speci�c evolutionary language� They have however
chosen a theoretic viewpoint� trying to enrich the evolutionary paradigm with new concepts or features not yet
implemented �� �� �� ����

We have chosen a radically di	erent approach� trying to be as pragmatic as possible� Our goal was to start with
the realisation of a minimal working prototype� able to implement almost any problem� We count on feedback
from end�users to guide the evolution of EASEA�

� Presentation of EASEA

��� Introduction

Several important ideas lie behind the EASEA language and compiler �

� EASEA must be general enough to be able to write virtually any evolutionary algorithm�

� Conceptually speaking� a language such as EASEA needs not be tied to a speci�c evolutionary library�
Hence� EASEA must be able to operate di	erent evolutionary libraries�

� EASEA should aim to hide away all programming mechanisms not explicitly needed to describe the
evolutionary algorithm�

� EASEA source �les must be simple enough to be written automatically by a graphic user interface�

�



Figure �� EASEA mode of operation

��� Mode of operation

The speci�cations of EASEA show that an EASEA compiler should be able to produce C�� source code using
di	erent evolutionary libraries�

Two libraries have been chosen to start with� GAlib �a widely used C�� genetic library ���� and EO
�Evolutionary Objects ���� developed at the University of Granada �Spain� within the Evonet ��� framework�

EASEA�EO is still under development while EASEA�GAlib is already operational� The EASEA�GAlib com�
piler uses for input an ascii �le with a �ez su�x� Its output is a GAlib C�� source �le including calls to GAlib
functions and objects� The resulting C�� �le must then be compiled by a C�� compiler and linked with the
GAlib library �cf� �gure ��� The produced executable implements the evolutionary algorithm described in the
original EASEA source �le�

� EASEA compiler

��� Description

EASEA is written in C��� using Lex and Yacc �in fact ALex and AYacc ����� The EASEA compiler is somewhat
unusual in the sense that it produces source code in another language rather than microprocessor instructions�
As EASEA syntax is rather simple� most serious errors come in fact from user�functions which are compiled
by a host C�� compiler� The nice consequences are that such errors are trapped by the very elaborate host
compiler syntax analyser and that semantic errors �bugs� are as elaborately dealt with by the host compiler
symbolic debugger� The not so nice consequence is that the human end�user must somehow debug the C��
code produced by EASEA�

The main di�culty resides in the fact that humans usually �nd compiler�produced source code quite di�cult
to read�

A second reason voting for highly readable generated C�� is that we think EASEA can also be used as a
primer� EASEA creates a C�� source �le which can be a starting point for an evolutionary algorithm that will
be re�ned afterwards�

Our main concern has then been to improve presentation and to have EASEA�generated C�� look as human
as possible�

This feat is mainly achieved through �

� a man�made template �le �galib�tpl for the GAlib version� As one can infer by its name� the GAlib
template �le contains the framework of a generic GAlib evolutionary algorithm� ready to be �lled up with
user�speci�c information found in the EASEA �ez source �le�

� very carefully typeset code� whenever EASEA generates code to �ll up the blanks � indentation is respected�
meaningful variable names are used and comments are generated from scratch to explain what the created
code is supposed to do�

The compiler contains two main parts� one responsible for the genome analysis and the other responsible for
code production�

�



��� Genome declaration analysis

EASEA genome declarations look very much like C or C�� structure declarations� char� int� double� bool
are accepted as basic types� Modi�ers are accepted� allowing arrays and pointers to be declared� Finally� it is
possible to declare new types �classes in fact� as EASEA is fully object�oriented��

Let us imagine� as a demonstrative example� a genome representing a polygon�

Side� int Coord����

Side �pNext�

�

Genome� Side �pList�

int NbSides�

�

This genome is made of a pointer towards a linked list of sides and of NbSides� an integer containing the number
of elements in the linked list�

A side is made of an array of two coordinates and a pointer towards the next side�

All variables are stored in a symbol table� along with their type and size �arrays�� New user types are stored
along with the elements they contain�

��� Generation of complete C�� classes

The template �le is in fact an empty shell� containing the source code for a generic GALib evolutionary algorithm�
The EASEA compiler copies lines from the template �le towards the object �cpp �le until it comes across a
compiler directive telling it to insert information which is to be found in the user�supplied �ez �le�

The user�de�ned types and functions are then inserted in the output �cpp �le� as well as the genome declaration�

� New types are inserted as new C�� classes� with all methods necessary to obtain fully 
edged C�� classes
�constructor� destructor� copy�constructor� operator�� operator��� operator��� operator��� operator����

Here is for instance the operator� member function� transparently created by the EASEA compiler for
class Side�

Side operator	
Side �EASEA�Var � �� Operator	

if 
pNext delete pNext�

EASEA�Var�pNext � pNext 	 new Side
�
EASEA�Var�pNext � pNext	NULL�

�for
int EASEA�Ndx	�� EASEA�Ndx��� EASEA�Ndx��

Coord�EASEA�Ndx�	EASEA�Var�Coord�EASEA�Ndx���

return �this�

�

� The Coord array has been automatically expanded and each of its elements are assigned individually�

� If the R�value pNext pointer is not null �EASEA Var�pNext�� a new Side object is created� and its
copy�constructor is invoked with the object pointed to by the R�value pNext pointer� This new Side

object is assigned to the L�value pNext pointer�

As an intelligent copy�constructor has also been created automatically for class Size� this results in
a recursive copy of the linked list�

� The genome is derived from the GAlib genome class� As for new user classes� all necessary methods are
transparently created�

Here is for instance the derived GAlib polygonGenome class declaration� created out of the previous Genome
declaration�

�� User Genome

class polygonGenome � public GAGenome �

�� Default methods for class polygonGenome

public�

GADefineIdentity
�polygonGenome�� ����

static void Initializer
GAGenome��

static int Mutator
GAGenome�� float�

static float Comparator
const GAGenome�� const GAGenome��

static float Evaluator
GAGenome��

static int Crossover
const GAGenome�� const GAGenome�� GAGenome��

GAGenome��

�



polygonGenome��polygonGenome
 �GAGenome
Initializer� Mutator�

Comparator�

evaluator
Evaluator� crossover
Crossover�

�� Zeroing pointers

pList	NULL�

�

polygonGenome
const polygonGenome � orig � copy
orig� �

polygonGenome operator	
const GAGenome ��

virtual GAGenome �clone
GAGenome��CloneMethod const �

virtual void copy
const GAGenome � c�

virtual int equal
const GAGenome� g const�

virtual int read
istream � is�

virtual int write
ostream � os const �

�� Class members

int NbSides�

Side �pList�

��

Of course� as for new types� all generic member functions are created transparently �constructor� destructor�
copy�constructor� operator��� as well as all member functions required by GAlib �clone� copy� equal� read�
write� Comparator��

The remaining member functions required by GAlib �Initializer� Mutator� Evaluator and Crossover� are�
�in v����� user�speci�c� This means that EASEA will look for their code in the �ez �le� under the names of
Genome��initializer� Genome��mutator� Genome��crossover� Genome��evaluator� as can be seen in the
extensive example of section �� Future versions of EASEA will implement representation�independent operators
in the line of Radcli	e�s work ����

In v���� EASEA expects to �nd C�� source code� that will be directly inserted in the resulting �cpp� quali�ed
by minor changes described in the next section�

��� Remaining independent of host libraries

Accepting di	erent host libraries means that EASEA cannot force the programmer to use the GAlib�speci�c
GARandomDouble function� This would mean that an EASEA �ez source �le would not recompile if another
library were to be used�

The solution is for EASEA to provide �as in any new language�� its own speci�c prede�ned functions and
keywords� Whenever such functions or keywords appear in the �ez source �le� the EASEA compiler translates
them to their GAlib �or EO� equivalent� As such� the EASEA random function call will be translated in its
GALib equivalent� GARandomDouble�

Identically� EASEA keywords are translated into their host�library equivalent� For example� variables parent��
parent�� child� and child� are prede�ned in the EASEA crossover function �cf� section ��� Those names
are translated into their GAlib counterparts �mom� dad� bro and sis� � � � if the GAlib library is to be used� of
course�

This is how EASEA source �les can try to be as independent as possible from host libraries�

��� Host libraries prerequisites

Although EASEA source �les can conceptually be completely decoupled from the underlying host library� this
is not the case right now� GAlib expects functions such as mutator� evaluator and crossover to behave a
certain way� the evaluator function should return a float� the crossover function should return the number
of created children �one or two�� the mutator is supposed to return the number of mutations which occurred in
the genome�

Unfortunately� it is very improbable that other libraries should have exactly the same expectations�

For the moment being� the EASEA manual describes how the GAlib library expects genetic operators to behave�

In the future� one can expect EASEA to impose its own prerequisites� If they are a superset of all the infor�
mation needed by the di	erent supported host libraries� EASEA will be able to generate the appropriate code
implementing the behaviour expected by each library�

�



��� User	space for external functions and variables

Up to now� the end�user has been o	ered to modify only four genome�related functions� This might not prove
su�cient if additional functions or external variables are needed� Therefore� EASEA v��� source �les can contain
a section which will be included verbatim�

This o	ers real freedom to the programmer� who can even include C�� compiler directives in this section�

� EASEA extensive source �le for a simple example

Here is one of the smallest examples of �ez source �le� implementing the well�known onemax problem �max�
imising the number of ones in an array of booleans�� It is included to show how simple a �ez source �le looks
like� A quick glance shows that EASEA code looks very much like C��� stripped of much of its syntax� C��
style comments are accepted and function bodies are written in pure C���

As soon as complex type operators �for arrays� lists� trees� already implemented by evolutionary libraries are
accepted by EASEA� user�written initialiser� crossover and mutator functions will be super
uous �cf
section ���

�� EASEA implementation of the ONEMAX problem ��

Genome � bool x����� �

Standard functions �

Genome��initializer �

for 
int i	��i����i�� Genome�x�i�	tossCoin
�������

Genome��crossover � �� Must return the number of concerned children

int GeneratedChildren	��

int CrossoverPosition	
intrandom
�����

if 
�child��

for
int i	��i����i��

if 
i�CrossoverPosition child��x�i�	parent��x�i��

else child��x�i�	parent��x�i��

GeneratedChildren���

�

if 
�child��

for
int i	��i����i��

if 
i�CrossoverPosition child��x�i�	parent��x�i��

else child��x�i�	parent��x�i��

GeneratedChildren���

�

return GeneratedChildren�

Genome��mutator � �� Must return the number of mutations

int NbMut	��

for 
int i	��i����i��

if 
tossCoin
PMut�

NbMut���

Genome�x�i�	Genome�x�i������

�

if 
NbMut		� identicalGenome	true� �� saves evaluation time

return NbMut�

Genome��evaluator � �� Must return the score as a float

float Score	
float����

for 
int i	 �� i����i��

Score�	
intGenome�x�i��

return Score�

Run parameters �

Population size � �� �� PSize

Number of generations � �� �� NbGen

Mutation probability � ��� �� PMut

Crossover probability � � �� PCross

Genetic engine � SteadyState

End of genome file�





To give a rough idea of the volume of code generated by EASEA� onemax�ez is �� lines long� and the generated
GALib�compatible onemax�cpp �le is more than seven times longer with ��� lines�

� Performance

The concern about performance surfaces whenever a piece of code is generated by a compiler� First of all� as
far as syntax is concerned� EASEA produced C�� �les are not that di	erent from what human�produced code
would have looked like � � � after debugging� Semantically speaking� it is true that when writing minor classes�
a human programmer will not take the pain of writing code for operators that he knows will never be called�
Although such re�nement could be included with much pain in EASEA �a �rst pass could determine which
operators of which classes will be needed�� the only drawback is that the selection scheme will deal with slightly
larger objects than necessary�

However� this cost is negligible� mainly owing to two facts�

� EASEA generates source code� which is destined to be compiled by an extremely evolved C�� compiler�
The code optimisation taking place in the C�� compiler will minimise the lack of optimisation of the
EASEA output�

� EASEA�generated code only concerns the manipulation of genome objects which usually represents only
a few percents of the total execution time of an evolutionary algorithm �usually overwhelmingly used up
by the user�written evaluation function��

� Future work

Feedback from scienti�c users is already very positive and shows that v��� is still far ahead� Necessary improve�
ments include �

� support of other libraries �among which EO��

� utilisation of host libraries complex types and operators �arrays� lists� trees� � � � and their corresponding
operators��

� implementation of default representation�independent operators for user�de�ned genomes�

� ability to allow user�de�ned function calls written in any programming language�

The �rst point is very important� as supporting at least two di	erent libraries is what will give EASEA inde�
pendence with reference to evolutionary libraries� This will also guide the evolution of the EASEA language
towards the really abstract evolutionary programming language it aims to be�

The second point will drastically simplify EASEA source �les� most evolutionary libraries already o	er complex
structures �arrays� lists� trees� � � � � and their corresponding operators� As soon as EASEA is capable of making
use of those complex types and their default operators� default initialisation� mutation and crossover functions
will not be needed anymore in �ez �les� unless the programmer feels the need to specialise some of them�

There is another way of removing genome�speci�c operators from �ez �les� in many cases� user genomes
will be aggregates of available types �e�g�� vectors of structures made of 
oats� integer and symbolic compo�
nents�� It is thus possible to de�ne default operators for such representations using Radcli	e�s ideas ���� The
three crossover operators �Random Respectful Recombination� Random Assorting Recombination and Random
Transmitting Recombination� as well as the Binomial Minimal Mutation are perfect candidates for that� Of
course� representation�speci�c operators will still be allowed in �ez �les� as it is acknowledged that they are
often more e�cient than representation�independent operators ���� Nevertheless� providing yet e�cient default
operators will be an important step towards real newcomers in the �eld �e�g�� �I only want to evolve my vector
of structures and don�t want to hear about it in the �nal result���

The last point is equally important to scienti�c users� many already have their own extremely complex evaluation
functions� painstakingly written in Fortran or some other language� Heterogeneous function calls could allow
them to re�use such evaluation functions� or even plug a hardware device onto the computer which would return
a physical evaluation of parameters contained in a genome�

�



	 Conclusion

Many important �elds in computer science have their speci�c languages �Fortran� C�C��� Lisp� Prolog�
Smalltalk� � � � �� Even complex applications such as databases or spread�sheets have developed their own
language � EA programmers remain however with C��� an inadapted and di�cult to use low�level object
language� As a result� many scientists have no other choice than wasting a lot of time with becoming computer
programmers and rewriting their own evolutionary algorithms� Due to thoroughly di	erent programming tech�
niques and languages� their programs are barely comparable� which is a great obstacle to scienti�c cooperation
and emulation�

The simplicity of EASEA programming is demonstrated with the source code for the onemax problem in
section �� Although the EASEA v��� compiler is still minimal �it should not be necessary� for instance� to re�
write completely initialisation� crossover and mutation functions for as basic a structure as an array of booleans�
v��� can handle linked lists� trees or much more complex structures while hiding from the end�user all of the
obscure uninteresting code necessary to operate object�oriented libraries�

EASEA source �les are designed to be recompilable with minimal e	ort on di	erent libraries� so that di	erent
research teams will be able to try out each others� implementations in their own environment�

We hope that EASEA will be able to o	er the scienti�c community the means to try out evolutionary algorithms
with a minimal time investment as far as programming is concerned� The EASEA v��� compiler and its manual
are available on the net ����

References

��� Evonet home page� http���www�evonet�polytechnique�fr �

��� E� Lutton et al�� EVO�Lab home page �EASEA v����� http���www�rocq�inria�fr�EVO�Lab� �

��� J� J� Merelo� EO home page� http��fast�to�EO � Granada University�

��� P� Stearns� ALex 	 AYacc home page� http���www�bumblebeesoftware�com � Bumblebee Software Ltd�

��� M� Wall� GAlib home page� http���www�mit�edu�people�moriken�doc�galib � MIT�

�� I� Landrieu� B� Naudts� �An Object Model for Search Spaces and their Transformations�� Arti�cial Evolu�
tion conference� EA���� ��� Nov ��� Dunkerque� France� �����

��� N� J� Radcli	e� �Forma Analysis and Random Respectful Recombination�� ICGA���� proceedings pp����
���� �����

��� N� J� Radcli	e and P� D� Surry� �Fitness variance of formae and performance prediction�� FOGA����
pp������ Morgan Kaufmann publ�� �����

��� P� D� Surry and N� J� Radcli	e� �Formal Algorithms � Formal Representation � Search Strategies��
PPSN��� proceedings ���� pp������ ����

���� P� D� Surry� �A Prescriptive Formalism for Constructing Domain�Speci�c Evolutionary Algorithms�� PhD
thesis� University of Edinburgh� �����

�


